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A coordinate system suitable for the numerical computation of viscous transonic cascade 
flows is constructed. The system consists of coordinate loops surrounding the airfoil and 
radial coordinate lines normal to the airfoil surface. The outermost loop is constructed 
so that the cascade periodicity conditions can be applied without interpolation between 
grid points. The coordinates are orthogonal on the airfoil surface but gradually become 
nonorthogonal away from the airfoil. The coordinate distribution of mesh points is simple 
and direct; this is a useful property for the resolution of large solution gradients. In addition 
to the above, the coordinates are generated from discrete input data, little restriction is 
placed on airfoil camber or spacing, and the entire analysis is easily extended to three dimen- 
sions. Moreover, the method of coordinate generation can be readily applied to a wide 
variety of other problems. 

1. INTRODUCTION 

An important problem faced by the designer of gas turbine engines is the prediction 
of the flow field through a cascade of airfoils. The prediction of the flow field depends 
upon an accurate representation of the cascade geometry. Because of the wide variety 
of practical cascade geometries, the need for a robust, accurate, and efficient coordinate 
generation procedure is evident. The coordinate generation procedure developed 
herein fulfills this need: It can be used as a mesh generator for a finite-element 
method [l-4], as a mesh generator tor a finite-volume method [S], or for the numerical 
solution of the Navier-Stokes equations in transformed space. 

To date, coordinate generation procedures for airfoils or cascades of airfoils have 
been based upon complex variables [G-9], solutions to elliptic partial differential 
equations [10-l 11, and direct geometric constructions [12-171. Procedures based 
upon complex variables are usually variants of Theodorsen’s method [18], a well- 
known generalization from the classical Joukowski or K&-m&-Treffetz airfoils [19]. 
Methods based on complex variables are inherently limited in the control of grid 
spacing and in the restriction to two dimensions. To overcome these limitations, 
more-general methods based on solutions to elliptic partial differential equations 
were developed [IO-Ill. These methods are comparable in efficiency to the methods 
based upon complex variables. Specifically, coordinate systems were generated 
from numerical solutions of Poisson equations. The source term, referred to as a 
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forcing function, was used to control grid spacing. On application, however, the 
coordinates usually become nonorthogonal. Because of this deviation from rigid 
orthogonality problems, direct geometric constructions have become attractive 
alternatives. Fundamental advantages are a direct control over grid spacing, an 
emphasis on the representation of geometric boundaries, and an absence of a complex 
solution procedure for the entire computational region. This latter point is easily 
translated into a savings in both computer time and storage. 

The simplest and most obvious type of direct geometric construction is the 
generation of sheared coordinate systems [13-171. For the cascade problem, however, 
the shearing process leads to severe mesh distortion, improper mesh distribution, 
and coordinate singularities in the critical leading and trailing edge regions [13-161. 
Unless special treatment were given to these regions, the results from numerical 
calculations would suffer. The method developed in this paper retains the advantages 
ot a direct construction but removes the above problems of leading and trailing edges. 

In addition to the treatment of leading and trailing edges, computational advantages 
are achieved from a careful parameterization of the bounding surfaces. Through the 
parameterization, the surface geometry and the distribution of points along the 
surface are specified. This dual specification leads to a savings in computer time 
and storage. Since the surface geometry is an invariant of the particular parameter- 
ization, the careful choice of parameterization is only for the distribution of points 
along the surface. The surface distribution is used for the alignment of points between 
surfaces or between parts of the same surface. For the cascade, the bounding surfaces 
are the airfoil and the surrounding outer boundary. The entire coordinate system 
is then generated from a properly aligned boundary specification. 

Included in the boundary alignment is the imposition of cascade periodicity 
conditions between the upper and lower parts of the outer boundary. This removes 
the need to interpolate boundary conditions. For implicit methods, the periodic 
alignment is essential since an implicit interpolation would effectively disallow 
the use of an AD1 splitting [20]; hence there would be a severe loss of efficiency. 
The periodic alignment, however, does not extend to a periodic alignment of the 
coordinate derivatives. This lack of extension also occurs with the cascade coor- 
dinates generated by solutions to elliptic partial differential equations [l 11. However, 
this apparent problem is easily resolved. For finite-difference procedures one-sided 
differences can be used effectively. For procedures based upon piecewise polynomial 
spaces (usually via collocation or Galerkin methods), only a pointwise evaluation 
is needed. 

2. A COORDINATE SYSTEM FOR CASCADE GEOMETRIES 

Overview 

A coordinate generation procedure which can be successfully applied to the wide 
variety of practical cascade problems must accept a set of control parameters and a 
discrete rendition of the cascade geometry as input data. Controls on coordinate 
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stretches and distributions are among the needed parameters. Stretching parameters 
are needed for coordinate extensions in the upstream and downstream directions; 
distributional parameters, for the resolution of large solution gradients. 

The coordinate generation procedure developed herein uses the above input. The 
discrete rendition of the cascade geometry is given in Cartesian coordinates (x, y) 
with a vertical y-axis in the direction determined by cascade periodicity. The periodic 
spacing between airfoils is taken as an increment along the y-axis; the airfoil contour, 
as a sequence of vertical slices. Each vertical slice consists of an x-coordinate which 
determines a vertical line x = xi and two y-coordinates y = yi and y = zi to denote 
points of intersection with the airfoil contour (Fig. 1). The distribution of vertical 
slices must provide discrete data which can be used to represent the airfoil contour 
and its curvature accurately. Data fluctuations caused by inaccuracies in measurement 
will usually occur when graphical data are used. To obtain an accurate rendition of 
the airfoil contour and associated curvature, any data fluctuations must be removed. 
For this purpose, it is best to apply a curve-fitting algorithm based upon a paramteric 
least-squares procedure [21-261. In the development presented herein, it will be 
assumed that a least-squares routine is always available to convert discrete descriptions 
of curves into smooth and differentiable representations of the same curves. If, 
however, the discrete data are taken from an analytic formulation of an airfoil 
contour (e.g., [27]), then ordinary splines would suffice [28]. The basic control on 
coordinate extensions is given by a specification of vectors pointing in the upstream 
and downstream directions, respectively. Controls on mesh point distributions 
consist of direct applications of boundary layer resolutions near the airfoil surface 
and resolutions of the airfoil leading and trailing edges. The latter controls arise 
from the process of coordinate extension and the distribution of mesh points around 
the outer computational boundary. The total number of mesh points along the 
outer computational boundary is broken down into three parts. Specifically, one 
must specify half the number of periodically aligned points, the number of points 
for the inflow boundary, and the number of points for the outflow boundary. 

With the above input, a system of coordinates is generated in a manner which is a 
generalization of both polar coordinates and the classical boundary layer coordinates 
[29, p. 3121. The circles in polar coordinates are now replaced by a family of loops 

FIG. 1. Input data for the airfoil contour. 
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about the airfoil which start with the airfoil itself and smoothly deform into the outer 
boundary of the computational region. The polar radii are replaced by straight lines 
which emanate from the airfoil surface and end on the outer boundary. As in boundary 
layer coordinates, the straight lines are taken to be orthogonal to the airfoil surface. 
However, since the intermediate loops are chosen by an interpolation between the 
airfoil surface and the outer loop the resultant system of coordinates is generally 
nonorthogonal. The nonorthogonality of the coordinate system as a whole is of no 
great concern since the coordinates are nearly orthogonal in the regions where the 
viscous flow is undergoing its greatest rate of change. Specifically, the coordinates, 
by construction, are precisely orthogonal along the airfoil surface and gradually 
deviate from orthogonality as one leaves the airfoil surface. The greatest degree of 
nonorthogonality occurs in the upstream and downstream regions where free-stream 
conditions are being approached, and where, therefore, the gradients in the viscous 
flow field are very small. If the outer loop could be taken as a uniform expansion of 
the airfoil along its outward normal lines, then the resultant coordinate system would 
be precisely a set of boundary layer coordinates for the airfoil and accordingly 
would be orthogonal everywhere. If in addition, the airfoil contour is a circle, then 
the coordinate system becomes a set of polar coordinates. Since the coordinate 
system has been constructed for a cascade of airfoils, the outer loop generally cannot 
be taken as an outward and uniform expansion of the airfoil itself. Instead, the outer 
loop must be generated from a curve which can conveniently be used for the 
application of the necessary periodicity conditions in the cascade problem. The 
basic shape of this curve should be reasonably close to the camber of the airfoil [27]. 
It will be referred to as a camber curve, hopefully without too much confusion. 
The generation of the camber curve is accomplished on a discrete level within the 
airfoil contour and is extended by lines outside of the airfoil. The discrete data 
can be conveniently generated from the y-values yi, zi of each vertical slice x = xi 
in the discrete specification of the airfoil contour (depicted in Fig. 1). The discrete 
data are then made into a differentiable curve which is extended by lines in front 
of and in back of the airfoil. The camber curve is shown in Fig. 2 as line AB. After 
a smooth camber curve is created, the domain of the calculation is bounded by two 
curves each parallel to the camber curve. One curve, line CD, is above the airfoil 
and the second curve, line EF, is below the airfoil. The curves are separated by a 
distance equal to the airfoil spacing and are capped off at the upstream and down- 
stream ends by curves which are smoothly joined to form the differentiable outer 
loop depicted by CDFE in Fig. 2. The outer loop is then reparameterized in a manner 
which yields a periodic alignment for the mesh points where a periodicity condition 
must be applied. The next step is to impose the parameterization of the outer loop 
upon the inner loop by dropping normals onto the airfoil surface. The reparameter- 
ization is accomplished by the assignment of the parameter value of each outer loop 
point to the point on the airfoil contour which has an airfoil normal line passing 
through the given outer loop point. This is computationally executed on a discrete 
level and is then made into a smooth curve by a least-squares routine. The inner loop 
with the imposed parameterization from the outer loop is now properly aligned 
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FIG. 2. Schematic of airfoil coordinate system. 

so that any line joining inner and outer loop points of the same parametric value 
results in a line that leaves the airfoil as a normal line. The normal lines form the 
family of the coordinate curves which correspond to the radii of a polar system. 
These are illustrated in Fig. 2. The other coordinate curves consist of the loops 
that are obtained by an interpolation along the above normal lines. The periodic 
alignment of the resulting coordinate system is illustrated by the line GH, which is 
represented by a dashed line since it is not a coordinate curve. 

The Effect of Airfoil Curvature on the Placement of a Lower Coordinate Boundary 

As a first step in the coordinate generation procedure, the discrete airfoil data 
are converted into a smooth curve by an application of a least-squares algorithm. 
The curve parameterization is obtained from the cumulative arc length between 
data points. The result is an accurate fit to data with an (almost) arc-length param- 
eterized curve y(t) = (y’(t), y2(t)) which has at least two continuous derivatives 
and accurately reflects the curvature of the contour from which the raw data were 
taken. The two continuous derivatives are needed to perform the calculation of the 
curvature, which is given by the formula 

K = (l/$)(j;yP - 53’12, (1) 

where a dot indicates a t-derivative, S is the actual arc length along the curve, 
s = (i,“py, g = i;mi;m/$ and the summation convention of summing like indices 
has been invoked. The analytic arc length, S, and the polygonal arc length, t, are 
nearly equal since t is an approximation of S. Thus s N 1, S N 0, and as a result 
K N (y”y”)1/2. The curvature here is needed to determine the extent of the compu- 
tational boundary below the airfoil. Since the bottom side of the airfoil is usually 
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SINGULARITY 

FIG. 3. Singularity from intersecting normals. 

concave it is clear that there is a restriction on the distance that the coordinates 
can extend below the airfoil. Otherwise, the proposed coordinate normal lines would 
have intersections among themselves when the domain is dropped beyond a certain 
point. This would cause coordinate singularities as illustrated in Fig. 3. To prevent 
these singularities, the cascade coordinates are required to lie above all points of 
possible intersections. The necessary restriction is analytically specified by a knowledge 
of the centers of the osculating spheres along the concave side of the airfoil. The 
osculating sphere in two dimensions is the circle which is tangent to the airfoil 
bottom and is determined by matching its derivatives with the airfoil surface until 
all of the parameters of the circle are determined. The center is located at a distance 
of l/K along the airfoil unit normal vector ri which is given by 

fi = [(jPd - pms)/Ks3] 6, , (2) 

where zi, and 2i, are the standard Cartesian unit vectors along the x- and y-axes, 
respectively. Thus, the vector position of the center is given by the quantity 

Y + W, (3) 

which will trace out a curve below the airfoil as the concave part of the airfoil bottom 
is traversed. To avoid the singularity, the coordinates must terminate within the 
region bounded below by this curve (Fig. 4). The bottom of the coordinate system is, 
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COORDINATE SYSTEM 

FIG. 4. Determination of lower coordinate boundary. 
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however, just a lowered version of the camber curve (arc EF of Fig. 2). To obtain 
a safe lower bound on the amount that the camber curve can be lowered, we shall 
compute half the vertical distance from the airfoil bottom to the centers of the 
osculating spheres. This should provide enough distance from both the airfoil bottom 
and the osculating sphere centers. A reasonable distance from the centers is needed 
to avoid an underresolution of computational mesh points along the airfoil bottom 
(Fig. 5). 

The actual computation shall be accomplished on a discrete level. The analytic 
curve for the airfoil is discretized by a uniform mesh over its parameterization, 
and at each of these mesh points, a unit normal vector (Eq. (2)) is computed when 
possible. At inflection points the curvature vanishes, and the unit normal vector 
given in Eq. (2) does not exist. Otherwise, the unit normals always exist and point 
in the direction of curve concavity. This is easily seen from Fig. 4 and the observation 
that the center of an osculating sphere is in the positive normal direction. From a 
sequential computation of projections between successive normal vectors (Eq. (2)), 
an algorithm can be easily obtained to detect airfoil concavity. At points of concavity 
the centers of the osculating spheres are calculated (Eq. (3)), and their x-coordinates 
are each determined to lie in some interval resulting from the partition imposed by the 
x-coordinates of airfoil mesh points. If the interval is directly below the airfoil, 
then the vertical distance is computed as the average of the y-values at the interval 
endpoints minus the y-value of the center of the osculating sphere. For an illustration 
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FIG. 5. A coordinate boundary near the center of an osculating sphere. 
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FIG. 6. The vertical distance between the airfoil bottom and the centers of the osculating spheres. 
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see Fig. 6, where the mesh along the bottom of the airfoil is denoted by a sequence 
of x’s. 

As this process continues throughout the concave part of the airfoil bottom, 
the successive vertical distances are monitored and a minimum is taken. Next, 
the maximum vertical thickness of the airfoil is computed. With this information, 
a criterion can easily be constructed to determine the amount which the camber 
curve is lowered to form the bottom of the computational domain. The difference 
between the periodic spacing and the maximum thickness of the airfoil is just the 
smallest vertical distance between consecutive airfoils as their chords are traversed. 
If one-half of this distance is less than the allowable vertical distance due the concavity 
restriction above, then the bottom of the computational domain can safely be set 
at one-half of the periodic spacing distance below the camber curve. The top of the 
computational region is then one-half of the periodic spacing distance above the 
airfoil, and the computational domain is bounded from above and below by well- 
centered curves which are parallel to the camber curve. By contrast, if the inequality 
is in the other direction, then the camber curve is lowered by one-half of the maximum 
airfoil thickness plus the distance due to the concavity restriction. This results in a 
computational domain which is not as well centered about the airfoil as that in 
the previous case. In either case, however, the coordinates are well defined and 
properly spaced. 

The Construction of the Camber Curve 

The above criteria for the vertical displacements of the camber curve can all be 
generated before the camber curve is constructed. For its application, the camber 
curve must obviously be in existence, and therefore, shall now be constructed. Since 
the airfoil data are specified as a sequence of vertical slices x = xi with y-values 
y = yi and y = zi (which are assumed to be lower and upper surface points, 
respectively), airfoil camber data are generated by a criterion of the form x = xi, 
v=u --JYi + CY,Z~ for 0 < ai < 1, as i runs through the vertical slices. For a 
smooth set of camber data, the sequence 01~ must be generated from a continuous 
function of limited total variation (see Royden [30]). The result of any such choice 
of function will be a sequence of data points which roughly follow the camber of the 
airfoil since the data points must lie within the interior of the airfoil. The resulting 
sequence of data points is first parametrized by polygonal arc length and then fit 
with a least-squares curve. In this case, accuracy is less important than it was with 
the airfoil contour. Under the assumption that the curve remains reasonably near 
the data, the only constraint on accuracy is that the polygonal arc length parameter- 
ization provide a reasonable approximation to the analytic arc length of the resultant 
curve. This part of the camber curve is used to form upper and lower computational 
boundaries which are directly over and under the airfoil itself. On these parts of the 
outer boundary loop, it is important to obtain a reasonably uniform mesh distribution 
with respect to arc length since it is this mesh distribution which will be used to 
impose a parameterization over most of the airfoil surface as normal lines are dropped. 
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A uniform subdivision of the parameter values will then result in a uniform distribu- 
tion of mesh points over the segments in question on both the airfoil and the 
surrounding outer loops. An additional bonus is that the linear extensions of the 
camber curve in upstream and downstream directions are simplified. Since the 
parameter is almost an arc-length parameter, it has an arc-length derivative which 
is nearly unity. On the linear extensions, a continuous rate of expansion relative to 
arc length is desired so that the number of mesh points is conserved as the compu- 
tational boundaries are stretched. Otherwise, the numerical computation of the 
viscous flow field would overly resolve the stretched regions, and thus waste a con- 
siderable amount of computation time on parts of the flow where no substantial 
changes are occurring. 

Since the linear expansion is to occur smoothly from an existing arc-length 
parameterization, the arc-length derivative of the parameter must be unity where 
the extensions are joined to the curve. The direction of each extension is given by 
the specification of a unit vector in the desired direction. Typical choices of direction 
may, for example, be selected from the flow conditions or from the global airfoil 
geometry. More specifically, one may stretch the coordinate system in the free-stream 
directions of the far-field velocity vectors upstream and downstream of the cascade. 
Or one may stretch the upstream and downstream extensions in the direction of the 
airfoil camber curve as it emerges from each end of the airfoil. 

For the latter choice, the directions in question are obtained from the unit tangent 
vectors to the camber curve at leading and trailing edges. Let a(t) for 0 < t < t, 
denote the camber curve between leading and trailing edges. Then the vector field 
consisting of unit tangent vectors to a(t) is given by 

v(t) = da/d,!? N da/dt, (4) 

where S is the arc length starting from a(0). The approximate equality is a result 
of the polygonal approximation oft to S. Since the vector field v points in the direction 
of increasing arc length along a, the extension in front of the leading edge is in the 
negative v(0) direction. Thus, an extension in front of length F is of the form 

4 -t SF(t) v(O), 

where S, is the arc length measured from -F to 0 as the parameter t varies from 0 
to some T. The value of T will determine the proportionate number of points in 
front of a relative to the number of points on a. If a(t) is discretized into k points 
uniformly distributed with respect to t, then the parameter spacing is given by 
d t = t,/(k - 1). For the extension in front, the greatest integer part of F/At (denoted 
[F/At]) is a measure of the number of whole At increments that could be fit into the 
extension if the parameter t of the extension were to approximate arc length. For small 
extensions, it is desirable to continue the parametric approximation to arc length by a 
discretization of the extension into the number of parametric intervals just given. 
However, if the extension is large, a coordinate stretching relative to arc length is 
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best. Large extensions are often needed to approximate free-stream conditions. 
Thus, the extension is cut into 

nF = min([F/At], mF) (6) 

units of length dt where the positive integer mF is a specified cutoff value. The arc- 
length function S,(t) is then to be parameterized from 0 to T = nF At. At the value T 
the derivative of SF is taken to be unity since the extension is to be joined at the 
resultant point with the nearly-arc-length-parameterized curve a. The desired 
stretching is readily given by the quadratic arc-length function 

S,(t) = (T - t) [(+ - 4) (T - t) - 11, (7) 

which monotonically increases from S,(O) = -F to S,(T) = 0 and ends with a slope 
of S,‘( T) = 1. If F is large, the function leaves -F fairly rapidly and on approaching 0 
gradually decreases its rate of climb until it is equivalent to arc length. Upon sub- 
stitution into the expression for the linear extension in front (Eq. (5)), a discretization 
for t = 0, At,..., nF At yields data points which start with Iarge separations, con- 
tinually decrease, and end with a separation equivalent to arc length. When the 
parameters of the discretization of a are each increased by the addition of T units, 
the result is a discretization of the extension in front continued by the discretization 
of a with the new parameterization which varies smoothly through the juncture 
point. Note that the juncture point is produced by both curves but is only counted 
once in this process. Thus, the discretization consists of k $ nF points, counting 
endpoints. The last point has a parameter value of t, = t, + T, and a rate of change 
that is equivalent to arc length. In the same manner as before, an extension of B units 
in length is added on to form a linear continuation in back of the airfoil trailing edge. 
The extension is of the form 

a(h) + f%(t) v(h), (8) 

where S, is the arc length measured from t, to t, + B, as the parameter varies from t, 
to t, + R for some length R. The value oft, was chosen instead of tl since the eventual 
discretization will be a continuation of the previous discretizations, and this choice 
will immediately lead to a smooth continuation of the parameterization. The extension 
in back is cut into 

nB = min([B/At], mB) (9) 

units of length At with an integer cut off value of m, for a total parameter change of 
R = n, At. Unlike the extension in front, however, the extension in back expands 
from an arc-length parameterization and not into one. This change in direction 
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results in the requirement that Se’(&) = 1. As before, a quadratic stretching function 
is sufficient, and the result is given by 

s3w = (2 - fz) [ ($ - f) (t - c2) + 11, (10) 

which monotonically increases from Se(&) = 0 to SB(tB + R) = B and starts with 
a slope Se’(&) = 1. 

The discretization for 6 = 2, + At,..., t, + IZ~ dt yields data points on the linear 
extension in back which at the start are separated by distances that are equivalent 
to arc length and then continually increase from there in an opposite fashion to the 
frontal extension. When this discretization is added onto the end of the prior dis- 
cretization, a properly parameterized discretization of the entire camber curve with 
extensions is obtained. The parameterization starts from 0 and ends with a value 
t3 = t, + R. The total number of points in this discretization is given by the sum 
nF + k + nB . At this stage, the data points could be fit with smooth curve that is 
parameterized in correspondence with the given discrete parameterization. Instead, 
however, it is best to use the above discretization directly to form a properly param- 
eterized discretization of the entire outer loop which encircles the airfoil and forms 
the outer boundary of the coordinate system. Then the outer-loop discretization 
will be fit with just one curve-fitting process as opposed to separate curve fits which 
must be smoothly joined between the upstream and downstream endcaps and the 
vertically translated camber curves. For an illustration, see Fig. 7, where the con- 
stituent parts of the outer loop have been displayed. The camber curve appears as 
the curve which linearly emerges from the airfoil through its extensions. The vertical 
translates are then displayed along with the adjoining endcaps. At the expense of a 
small amount of storage, the discretization of the camber curve is vertically translated 
above and below the airfoil. This is accomplished in the manner prescribed by 
the algorithm of the previous section which yields a determination of the vertical 
distance of translation based upon the airfoil thickness, spacing, and underside 
curvature. 

CAMBER CURVE 

AIRFOIL 
CAMBER CURVE 

EXTENSION OF EXRENSION OF 

B UNITS IN BACK 

ENDPOINTS OF 

VERTICALLY TRANSLATED 

CAMBER CURVE 

FIG. 7. The constituent parts of the outer loop. 
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The Construction of Endcaps for the Outer Loop 

Let the vertically translated camber curves of the previous section be denoted 
by p(t) and q(t) for the lower and upper parts of the outer loop. As with the camber 
curve itself, the range of the parameter t will be from 0 to t3 as the curves are traversed 
from front to back. To complete the specification of the outer loop, endcaps must be 
constructed to join the translated camber curves together, at both the front and back 
ends. For the construction of endcaps, it is sufficient to use a bicubic curve at each 
end with the stipulation that function values and tangent vectors are matched at the 
joins. It will be assumed that the parameter values are taken from 0 to some number T. 
A small value of Twill cause the bicubic end to approach a vertical line; large values, 
a bulge away from the line. The choice, however, is arbitrary and as a matter of 
convenience T can safely be taken as twice the periodic spacing distance. Each 
cubic polynomial here is of the form 

e, i- e2t + 3 [ ( 
el F2 eo ) - Lk] t2 - 2 ( el F3 eo ) p, 

where e, and e, are polynomial values at the respective endpoints 0 and T; e2 is the 
slope at 0. For the x-coordinates, the endpoint evaluations are equal due to the 
vertical alignment of the camber lines. Consequently, e, = e, and the polynomial 
becomes a quadratic which starts with a slope of e2 and ends with a slope of -e2, 
(see Fig. 8a). In the front e, = p,(O) and in the back e, = pl(t3) where the decompo- 
sition p = (pl , p2) has been used. The slope e2 is given by the x-component of the 
direction of camber line extension which is -v(O) for the front and v(tJ for the back 
where v(t) is given by Eq. (4). The negative slope of -ep is needed at T since the 
parameter values are increasing in a direction opposite to the unit vector which points 
in the direction of camber line extensions. The y-components of these slope conditions 
are used to evaluate the quantity e2 for the calculation of the y-coordinates. The 
polynomial evaluations for the y-coordinates are given by e, = p2(0), e, = q2(0) 
for the front and e, = q2(t3), e, = p2(t3) for the back. Note that the orientation is 
from bottom to top in front and from top to bottom in back. This is done as a matter 
of convenience so that a clockwise parameterization can be easily given to the outer 
loop. The graph of one of the cubic y-coordinates is given in Fig. 8b. The endcaps 

FIG. 8. (a) Quadratic x-coordinate. (b) Cubic y-coordinate. 
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are then discretized by a sufficiently fine mesh and parameterized by polygonal arc 
length. When taken with the translated camber lines, the result is a discretized version 
of the entire outer loop. But one is still not finished, since the parameters must be 
suitably adjusted to interface with the desired mesh point specification for the fluid 
dynamic calculation. Suppose that the computational mesh is to have k periodic 
points along the translated camber lines p(t) and q(t); n points along the front endcap, 
not counting juncture points; and m points along the back endcap, also not counting 
juncture points. The total computational mesh along the outer loop would then 
consist of n + 2k + m points, and therefore, that same number of normal lines 
to the airfoil surface. The parameterization of the translated camber lines p(t) and q(t) 
is the same and varies from 0 to t, . Since these parameterizations will be preserved 
up to rigid translations, the interval 0 to t, is cut into a uniform mesh with k - 1 
intervals of length dt = t&k - 1). At the front endcap, n + 1 such intervals are 
needed. Thus, the arc-length parameterization of the front endcap must be replaced 
by a parameterization from 0 to (n + 1) At which smoothly passes through the 
juncture points. This is accomplished by a blend of straight lines from each endpoint 
with slope determined by the existing arc length derivative 9 at those points. This 
process is illustrated in Fig. 9. 

t 

FIG. 9. A blend of lines. 

The lines are generated with arc length S as the independent variable which varies 
from 0 to S*, the arc length of the endcap on the front. The slope of each line is 
given by the rate at which the camber curve parameter varies with respect to arc 
length at the beginning of the camber curve. Thus, one has the two parallel lines 

and 

S 
r”(x) = / S;(O)1 VW 

where SF(t) is given by Eq. (7). The desired blend must start along 1,) gradually 

581/26/3-5 
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FIG. 10. Homotopy parameter. 

leave I, , and smoothly merge into l, to end at (S*, (n + 1) At). This is accomplished 
with a linear homotopy [31] between I, and l,, a homotopy-deforming parameter 
given by the function 

h(S)=;/1 + tanh(2D/S*)(S - S*/2) 
tanh D > (13) 

and a damping factor D which controls the rate of ascension between the lines 
(Fig. 10). Altogether, the parameterization for the front endcap is given by the 
linear homotopy 

t(s) = [I - WI W) + W) uo (14) 

Along the upper curve q(t), the parameterization is shifted by the addition of 
(n + 1) dt to each parameter value. The result is a discretized curve with a smooth 
parameterization covering the front endcap with parameter values from 0 to (n + 1)d t 
and continuing along the top with (k - 1) At units to end at a parameter value of 
(n + k) At. At thi s s t age, the endcap at the back is adjoined; in the same manner as 
above, it is reparameterized to vary smoothly from (n + k) dt to (n + k + M + 1) dt, 
where a juncture occurs with the lower curve p(t). Then the orientation of the lower 
curve is reversed by the relabeling of points so that one has the curve p((k - 1) dt - t). 
The resulting parameterization for p is next, shifted by (n + k + m + 1) dt units 
so that a smooth parameterization is properly specified for the entire outer loop. 
The outer loop is given by a discrete set of points which are parameterized from 0 
to (n + 2k + m) At as the loop is traversed in a clockwise direction. If desired, 
the parameterization can be renormalized in preparation for a curve-fitting process. 
The curve fit here is accomplished with an application of a least-squares procedure. 
In this process, the outer-loop data are transformed into a smooth curve with three 
continuous derivatives and the prescribed parameterization. Note that the least- 
squares procedure will effectively filter out the small smoothness errors that occurred 
when arc length was approximated with the arc length of a polygonal curve. The 
small smoothness errors in question appeared as slope information at the juncture 
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points on each end of the camber curve extensions. Parametric accuracy within the 
camber curve is not very important, since the periodic alignment of mesh points is 
not affected by a slight loss of accuracy within that region. On the endcaps, such 
questions of accuracy would seem more important. However, the construction 
above was performed in such a manner that the accuracy did not enter into the 
assignment of parameter values at the endpoints of any endcap. The only effect, 
then, would be in the specification of slopes for the lines I, and I1 (for each endcap), 
which would undergo the smoothing of least squares in any event. Consequently, 
the alignment of periodic points will be very accurate. 

The Reparametrization of the AirfoiI Surface 

After the properly parameterized outer loop is constructed, the airfoil surface 
must be reparameterized to align airfoil parameter values with outer-loop parameter 
values so that corresponding points lie on the same airfoil normal line. Once the 
reparameterization has been accomplished, the coordinate transformation will be given 
by the equation 

x = RW) a(v’) + [l - RW)l fW>, (15) 

where x = (xl, x2) are Cartesian coordinates, 13 is the airfoil contour, a is the outer 
loop, R is a coordinate distribution function along the normals, and y = (y’, J+) 
are curvilinear coordinates. The coordinate, y2, is the position along normal lines, 
and y1 is the position around the outer loop which is to be imposed upon the airfoil 
surface, and hence, upon all intermediate coordinate loops. The reparameterization 
is accomplished in a discrete manner. A sufficiently dense uniform mesh is used to 
discretize the outer-loop parameter, and hence, to create a smooth sequence of 
outer-loop points with their smoothed parameter values. From each of these points, 
a normal line must be dropped to the surface of the airfoil The simplest way to find 
the desired airfoil normal line is to locate the point on the airfoil surface which is 
closest to the outer-loop point in question. For each outer-loop point, this distance 
minimization problem is always solvable since the airfoil surface is either locally 
convex or is locally concave with the centers of the osculating spheres placed (by 
construction) a sufficient distance beyond the outer loop. When the airfoil point of 
minimum distance is located, it is assigned the parameter value of the outer-loop 
point. The process is then continued to the next point on the outer loop until all 
data points on the outer loop have been used. The result is a discrete reparameter- 
ization of the airfoil surface which can be turned into a smooth curve in either of 
two ways. First, the airfoil may be recreated by treating the given airfoil data as 
raw data and directly applying the curve-fitting routine. If the reparameterization 
should cause enough distortion relative to arc length, then a curve fit to the change of 
parameter relationship should be considered as a second and alternative method. 
Specifically, new and old parameter values must be paired off and then subjected to a 
monotone curve fit 132-331. The reparameterized airfoil is then given by the compo- 
sition with the old parameterization expressed as a function of the new parameter- 
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ization. Consequently, the airfoil geometry remains invariant; the accuracy and 
rendition of the airfoil geometry is then preserved. 

An integral part of the reparameterization is the method used to drop the normals. 
For reasons of simplicity and stability, the algorithm is based on the minimization 
of distance, as indicated above. The outer-loop mesh points are consecutively taken 
in the clockwise ordering of the parameterization. The lower juncture point between 
the front endcap and the lower camber curve is the starting point, a(0) = (a,(O), c+(O)). 
From this point the distance, a, to a selected airfoil data point within the leading 
edge region is computed. The search for minimum distance is performed over the 
existing airfoil data points with Cartesian x-coordinates less than al(O) + d. This 
criterion limits the search to a region around the leading edge (Fig. 11). The location 
of the airfoil data point of minimum distance is then used to start the search algorithm 
used on the remaining points. The algorithm starts with a known previous position. 
For the first point, this position is the location determined above. For other outer- 
loop points, the previous position is the existing airfoil data point just before the 
point on the airfoil determined by the normal line dropped from the previous outer- 
loop point. Since outer-loop points are taken in a clockwise order, the previous 
point on the airfoil is simply the existing airfoil data point which is nearest to the 
point in question when distance is measured only in the counterclockwise direction. 
From here, a distance is computed and the search over existing data is continued 
until the measured distance exceeds the starting distance. This process limits the 
search of existing data points to a small region on the surface of the airfoil, and thus, 
saves computer time. For an illustration, see Fig. 12. The mesh on the outer loop is 
denoted by a sequence of dots; the existing airfoil data, a sequence of x’s. The 
distance, 4, to the previous airfoil data point is measured along a line (dashed in 
the figure) which generally intersects the previous normal line unless the normal line 
emanates precisely from an existing airfoil data point. The search is continued 
until one reaches a distance, dz , which is greater than the starting distance, dl . In the 
illustration, the search would result in the selection of the point of minimum distance 
from the first three points pictured. After the point of minimum distance has been 
found from the existing airfoil data, the analytic formulation of the airfoil contour 
is used to create new data for a refined search in a small neighborhood of the point. 

FIG. 11. Region of search for first point. 
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FIG. 12. Criterion to limit the search of existing airfoil data. 

The simplest procedure is to search for a point of minimum distance over a nest of 
discretizations. If the previous airfoil data point is the point of minimum distance, 
then the initial region of the nest need only cover the surface from that point to the 
nearest point in the clockwise direction. This is because a move in the counter- 
clockwise direction would only increase the distance. In the other cases, the initial 
region is determined by the existing data points on either side of the minimum point. 
In any case, the initial region is determined by two points which correspond to the 
end points of a parametric interval. A uniform discretization of this interval is used to 
start the nest. New data points corresponding to the uniform parameter values are 
then created, and a search for minimum distance is made. At the point of minimum 
distance, this process is repeated with the mesh points viewed in the same capacity 
as the existing airfoil data points of the first step. For succeeding intervals, however, 
the corresponding surface patch must contain the minimum points in its interior. 
The continuation of this process results in a nesting of surface patches that contain 
the analytically defined point of minimum distance. This point is, however, a member 
of a sequence of points which are ordered in a clockwise direction in correspondance 
with the clockwise ordering of the outer loop of data points. Consequently, the nesting 
above should be continued until, at the very least, the parametric interval contains 
only the parametric value of the analytically defined minimum point in question. 
This process will ensure that the clockwise ordering of the outer loop sequence will 
be preserved by the new sequence of airfoil data points determined by the approximate 
normal lines. The outer-loop parametrization is now discretely given as a monotone 
function of airfoil arc length; hence, a discrete parametrization of the airfoil surface 
has been obtained. As a matter of practice, the nesting above is usually continued 
only slightly beyond the level which ensures monotonicity of the parameter function. 
Further, nesting beyond this point would certainly result in more accuracy. However, 
when the accuracy is of the same order as the curve-fitting accuracy, there is little 
need to continue the search to greater perfection. An intrinsic advantage of this 
procedure is that accuracy is automatically increased in regions where airfoil normals 
are heavily concentrated, while other regions are adequately resolved with a lesser 
level of accuracy. Specifically, the density of normals tends to be greatest on leading 
and trailing edges; as a result, those regions are more highly resolved without incurring 
the cost of resolving the other regions which do not require the same high level of 
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accuracy. In the above procedure, the interval nesting is easily replaced by virtually 
any sufficiently robust method of optimization (e.g., the method of Hooke and 
Jeeves [34]). However, for the one-dimensional airfoil surface considered in this 
application, the use of another optimization technique is not warranted. On the 
other hand, if the natural three-dimensional extension of the coordinate construction 
presented herein is to be done, then the method of search becomes more important 
since the search is over a two-dimensional surface with the result that the potential 
number of searching directions has increased. In that case, a different optimization 
technique should be considered. 

Distribution Functions along Normal Lines 

In regions where the expected solution gradients are large, the approximate solution 
may be very poor unless the particular region is dissected into smaller regions. 
In fluid mechanics, the boundary layer of a viscous flow around or through an 
object is such a region. The process of dissection is commonly accomplished by 
the use of a coordinate distribution function. 

Within the framework of cascade coordinate systems, boundary layer resolution 
near the airfoil surface is accomplished with the distribution 

R(y2) = my2 + (1 - m) [ 1 - ‘“4:: i ‘“) 1. 

Here, the ratio of hyperbolic tangents is a homotopy parameter [31] in the linear 
deformation of the line R = my2 into the line R = m(y2 - 2) + 2. The rate of 
deformation is controlled by a damping factor D; this determines the length of 
essential adherence to the line R = my2. The slope m is chosen so that the resulting 
line would yield a uniform mesh which is fine enough to resolve the given boundary 
layer region. A good choice is to let m be the ratio of the fractional part of the flow 
occupied by the boundary layer to the percentage of the mesh that is needed there. 

The distribution is, in fact, a generalization of the distribution due to Roberts [35]. 
For n mesh points and a constant a > 0, his distribution is given in inverse form 
as a map from a physical domain [-a, a] into a computational range [I, n]. From an 
inversion and a normalization of the range and domain to the interval [-1, I], his 
distribution reduces to a normalized hyperbolic tangent. A rigid translation then 
corresponds to our special case with m = 0. As a result, the damping factor is the 
only control on the shape of his distribution. For purposes of boundary layer 
resolution, the shape must depend upon an estimate of boundary layer growth. 
The estimate is generally a function of distance along the body surface. In his case, 
the estimate is used in a complex and indirect manner to specify the damping factor. 
By our introduction of a slope adjustment, a direct use of the estimate is possible 
and is, indeed, an advantage both geometrically and computationally. 
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3. THE GENERATION OF THE NAVIER-STOKES EQUATIONS WITH 
THE METRIC DATA FOR CASCADE COORDINATES 

The efficient generation of metric data is an important part of any solution 
procedure involving general curvilinear coordinates. Before a solution can be under- 
taken, the physical problem must be specified. Problem specification, however, 
involves the creation of boundary and initial data and the generation of the equations 
of motion with the associated boundary conditions. In addition, the solution may be 
monitored, examined, or put under physical constraints. In all of these tasks, the 
metric data are needed. A knowledge of the metric data is enough to specify completely 
the equations of motion and to analyze the coordinate invariant directions for the 
specification of boundary and initial conditions. For very complicated geometries, 
the equations of motion may contain an inordinate number of terms. However, 
if the equations are taken in tensor form, then the coefficients to terms can be con- 
structed from the metric data, with the construction process performed on a computer. 
Once a nontrivial term is constructed, its contribution to the desired difference 
equations is computed before searching for the next nontrivial term. Sequentially, 
the process continues until all terms in the equations have given their contributions 
to the system of difference equations. Then, in the same fashion, one cycles through 
terms in the boundary conditions, sequentially adding in their respective contributions. 
The result is the desired set of difference equations, and the problem is effectively 
reduced to linear algebra. Note that with such methods there is no real need to 
write out the differential equations or complicated boundary conditions in detail. 
Thus, all one needs to do is to generate the metric data and use them. 

The coordinate transformation from cascade coordinates into Cartesian coordinates 
is given by Eq. (15) in the previous section. By differentiation, one obtains the 
Jacobian transformation which leads directly to the transformation rules for tensor 
fields. These rules allow one to input, monitor, or extract basic information from a 
solution procedure involving transformed variables. The Jacobian transformation is 
essentially obtained from the chain rule which yields 

ax axi ax ad ef = - = 17 = 7 aj ) 
aYa ayz ax3 ay* 

where Gi is the standard orthonormal basis of constant vector fields, and ej is the 
natural basis of tangent vectors to coordinate curves. With a slight abuse of notation, 
x has been used as a position vector in the definitions of ej and Qi . However, nothing 
is lost since the covariant derivative of x = X$ is just the partial derivative of the 
~3 summed on 12, . In the standard Cartesian basis 22, the outer loop and the airfoil 
contour are expressed in the forms Q = c& and p = /3%, , respectively. In this 
notation, the transformation for cascade geometries is given in component form by 
the equations 
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for i = 1, 2. By differentiation the Jacobian transformation is given by 

and 

e2 = [ $- (d - a)] iii . 

WW 

The metric tensor gij is obtained from the differential element of arc length 
(~5)~ = gij dyi d’i. From the known Cartesian form and an application of the chain 
rule, the differential element of arc length is expanded through the sequence of 
equalities. 

(ds)2 = dx . dx = ($ dy’) - (-& dy’) = $ - $ dyi dyj = (ei - ej) dyf dyj (20) 

and, as a result, the metric is given by gii = ei + e, . 
The e,-direction covariant derivative Dj of the vector ei is again a vector, and 

hence, is expressible in terms of the same basis e, , e2 . Specifically, 

D,e, = I’$e, , (21) 

where the coefficients riy are known as Christoffel symbols. This covariant derivative 
measures the rate of change of ej along a coordinate curve in the direction of ei . 
This coordinate curve is an integral curve of ei which is obtained by fixing all except 
the ith variable in the transformation. 

The assumption will be made that the covariant derivative is the natural one 
derivable from the metric. This is known as the Levi-Civita connection [36]. The 
Christoffel symbols for this covariant derivative are given by the formula 

(22) 

where the gkm are elements of the matrix inverse to the matrix of metrics (gij). This 
formula is easily obtained by differentiating g,, = ei * ej with respect to y*, permuting 
all three of these indices, forming the sum in parentheses, applying symmetry to the 
lower indices of the Christoffel symbols, and then applying the inverse metric. With 
some calculation, one can obtain the nonzero Christoffel symbols directly from the 
above formula. 

For the automatic computation of the metric data, it is convenient to use forms 
which are explicitly given in terms of the coordinate transformation and its derivatives. 
By a direct expansion of the dot product, ei * ej , the components of the metric 
tensor become 

(23) 
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If A denotes the Jacobian matrix (e i , ez) with transpose At, then it is easy to see that 

g = det(g,,) = det(PA) = det(M) det(A) = (det A)2 = J2, (24) 

where J is used to denote the Jacobian of the transformation. For nonsingular 
transformations, J is nonzero; hence, both A and (gij) are invertible. Thus, the 
inverse metric is obtained from 

(g"") = (gij)-' = (At&l = A-yAt)-l= A-Q-y, Pa) 

which is converted into components to yield 

km - a.Yk aYrn g - a9 axl' Wb) 

The Christoffel symbols can now be obtained by a direct substitution into Eq. (22); 
the result is the simple form 

p. - aYk 23 a;xz 
a9 ays ap 3 (26) 

which is suitable for automatic computation. 
In terms of arbitrary metric data, the governing equations are derived from the 

Navier-Stokes equations. For velocity v = viei, density p, total energy per unit 
volume E, temperature T = T(p, E, v), thermal conductivity K, and pressure 
p = p(p, E); the metric version of the governing system of equations is given by 

for continuity; 

$ (pgll”) + $ (pvigl’2) = 0, (2% 

4 (W2) + + [ 1 ,?# - giiK $ + goT~ju~l glP] = 0, 

for energy; and 

[ 
$ (pvkgl/z) + g + #.F/j] ek = 0 

for momentum, where & = (pdvj + +) g1j2. The quantities TQ are the components 
of the stress tensor in the tensor product basis ei @ ej . In expanded form, the stress 
tensor is given by 

where 

& = p 
( 
2 ii 
3 g G 

agij 
+ y”) W-4 
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and 

with viscosity p and Kronecker deltas 6: = 8j = & [37-39, 171. 
If desired, the momentum equation can easily be put into conservation law form. 

When the expression for the Christoffel symbols given in Eq. (26) is inserted into the 
momentum equation (27c), one obtains 

[ 
+ (pvkgl/2) + g + ,ij g $$-I e, = 0. (29) 

A change of basis from the curvilinear direction ek into the Cartesian directions a,,, 
can be expected to simplify the momentum equation. This is performed by an 
application of Eq. (17) which yields 

aXm pvkgl12 - 
aYk 

+ (30) 

With the assumption of nonmoving coordinatesi the Jacobian transformation was 
brought through the time derivative. Now the definition of the Kronecker symbol 
is applied and the dummy indices i in the last term are replaced by k’s. The result is 
given by 

+ 
axm ad" ~ ~ 
ayk ay 

+,$"? __ a axm n o 
ay3 ayk Urn = ) ( )I (31) 

which, in component form, reduces to the system of conservation laws 

4 ,,vkgl/” $f$) + -$ (ujk G) = 0. 

For more information on this topic see Refs. [39-411. 
Although the rather formal development above provides a specification of a 

problem in the cascade coordinate system, it does not provide much insight into the 
metric structure which is needed to interpret results and to apply boundary conditions 
properly. For this reason, the metric will be derived in terms of the basic geometric 
parameters of the cascade. Once this is done, correlations between the metric structure 
and the underlying coordinates can be made. It is first observed that the cascade 
coordinate transformation (15) can be broken down into two basic parts. Since 
u - 13 is a nontrivial normal vector pointing from the airfoil p to the outer loop a, 
its magnitude d = 11 a - p/1 is a measure of the distance across the coordinate 
system in the direction given by the outward unit normal vector from the airfoil. 
However, the outward unit normal is given by both 

A = (a - P>/II a - P II (33) 



VISCOUS TRANSONIC CASCADE ANALYSIS 329 

OUTER LOOP 

COORDINATE 

FIG. 13. Intrinsic geometry of the cascade coordinate system. 

and the Frenet formulas on the airfoil contour. For the airfoil contour, a unit tangent 
vector + is given by + = sD,p where ,!? is the yl-derivative of arc length along the 
airfoil. Upon successive differentiation, one obtains the Frenet formulas 

(34) 

where c = - 1 on convex parts of the airfoil and c = 1 on concave parts. At inflection 
points, however, the formulas do not exist [37]. Consequently, the coordinate trans- 
formation can be written in the form 

x = Rdfi + f3, (35) 

with the unit normal vector given by either of the above specifications. At non- 
inflection points, the latter specification shall be used so that the Frenet formulas 
can be employed to some advantage. Since the coordinate transformation is con- 
structed from functions each of only one variable, derivatives of these functions 
can be denoted with a dot and result in no ambiguities. In this notation, transformation 
(35) is differentiated to obtain the natural basis of tangent vectors to coordinate 
curves. From an application of the Frenet formulas, the result becomes 

e, = Rdri + s(1 - cKRd) +, 

e2 = Rd7i. 
(36) 

For an illustration of the vector relationships, see Fig. 13. Since the vectors + and fi 
are orthonormal, the metric is readily obtained from a direct substitution into the 
equation g,? = ei . ej . The result is given by 

g,, = (Rd)” + [s(l - cKRd)12, 

a, = g,, = RR& 

g,, = (fidj2, 
(37) 
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and from the determinant of this metric one obtains the Jacobian 

J = g1j2 = d&9(1 - cKRd). (38) 

The magnitude of the Jacobian, however, is a measure of the relative scaling of 
coordinate volume elements throughout the domain of the transformation. If the 
Jacobian is zero at a point, then the differential volume element there is zero and 
the transformation is singular. Since the Jacobian is a continuous function, one 
may also examine the coordinates as a singularity is approached. With the cascade 
coordinates presented herein, a singularity can occur only if one of the factors in the 
expression of the Jacobian should vanish. However, each of these possibilities will 
lead to an unreasonable system of coordinates. The factors l? and ,!? can be eliminated 
from consideration since both R and S must be given by strictly monotone functions, 
and therefore, cannot vanish. A lack of monotonicity here would cause the coordinates 
to locally double back upon themselves, and thus, render local regions where the 
coordinates are not uniquely defined. This leaves one with two possible factors that 
could vanish. First, if d should vanish, then the airfoil surface and the outer loop 
would coincide at the point or points in question. As the points of coincidence are 
approached, the coordinate loops are then smoothly compressed into a region of 
zero cross section, and hence, smoothly approach the singularity. The second 
possibility for a singularity would occur if the last factor (1 - cKRd) should vanish. 
This, however, could only occur in the region of a concave part of the airfoil, since 
otherwise the factor is the sum of positive quantities. But in the region of a concave 
part of the airfoil, the centers of the osculating spheres were sent outside of the 
coordinate system by construction; the analytic implication is that Kd < 1; hence 
the factor cannot vanish. 

The rate of change along coordinate curves is measured by the covariant derivatives 
of the natural coordinate tangent vectors. In this regard, the Christoffel symbols 
contain the desired information. For example, an application of the covariant 
derivative D, to e, yields 

D,e, = iidfi = (ii/R) e, , 

and hence, the Christoffel symbols 

l-i2 = 0 and ri2 = R/R (40) 

by observation from Eq. (21). This result is also partially evident from the basic 
geometry. The curves of constant y1 are just the normal lines; hence, any variation 
of their tangent vectors must be in magnitude only. This conclusion is born out from 
the analytic fact that I’i2 vanishes. In the special case of a uniform distribution of 
loops, the function R is given by R = y2. The second derivative vanishes with the 
result that .I’,” also vanishes. Then D,e, = 0 which implies that e2 is constant along 
its normal line. The other Christoffel symbols can be computed in the same manner. 
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Since derivatives along the airfoil surface are involved, it is convenient first to invert 
system (36), which yields 

fi = (l/Ad) e2 , 

+ = (Rd/J) e, - (Rd/J) e2 . 
(41) 

By differentiation of the second equation in system (36), one obtains 

(42) 

where the last equality follows from Frenet formulas (34). By a substitution of 
system (41) into the Eq. (42) one obtains 

rEe,,, = RdAe, + (d/d + RdA) e2 , (43) 

where A = &K&d/J. From linear independence, the Christoffel symbols of the 
left-hand side are just the coefficients displayed on the right-hand side. With some 
algebraic simplification they are given by formulas 

and (44) 

cl = rf2 = $ 1 _ LKRd . 

By the evaluation of D,e, in the above manner, one obtains 

r,l, = & (log J) - rf2 
and 

p - gl2 
11 

a 
I 
- (log d) - r:l/ + $ . 

g22 w 

This completes the evaluation of Christoffel symbols, and hence, the metric data. 
The metric data, above, are applicable to a class of coordinate systems. Each 

member of the class is generated by linear interpolation between two nonintersecting 
surfaces and is orthogonal along one of the surfaces. This includes cascade coordinates 
(developed in Section 2), boundary layer coordinates [29], and polar coordinates. 
The metric data for boundary layer coordinates over a convex body are obtained 
by setting c = --I and r = Rd; the metric data for polar coordinates, by setting . 
c = - 1, S = b, K = b-l, and r = Rd + b, where b is some fixed inner radius. 
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4. RESULTS 

To evaluate the algorithm for the generation of cascade coordinate systems 
described in the previous sections, several test cases were devised. For the first case, 
the chief criterion was to obtain a test case which was complicated enough to simulate 
a real cascade, and yet specialized enough so that comparisons could be made with 
known geometric parameters. Since most real cascades are known to be composed 
of highly cambered airfoils, it was required that the first test case be for a cascade 
with a highly bent airfoil. In addition, since the cascade coordinates are generated 
from raw data, the test case was constrained to a problem where the airfoil curvature 
was known. In this way, the geometric representation of the airfoil could be evaluated 
for accuracy in both location and curvature. Since circles are curves with known 
constant curvature, closed by smaller circular arcs 

attached to each end. An illustration is given in Fig. 14. 
The two concentric arcs were constructed with an inner radius 

RI and an outer 
radius Rz . The center point was taken at xq = 0 and the arcs extended through 
angles from 7r/4 to 37r/4 radians. To form a closed loop, smaller arcs of radius 
Y = (R, - RI)/2 were attached to either end. These arcs were centered at the Cartesian 
locations (&x, x) with x = (R, + r)/21/2. To express the data in terms of vertical 
slices, the airfoil was subdivided into five regions where a unique analytic description 
was available. The regions are marked off by the dashed vertical lines in the figure. 
When the endcap angles a: and the angle e1 for the inner concentric arc are discretized 
by a uniform mesh, the result is a collection of vertical slices which discretely define 
the airfoil contour. For the test case, the central interval X, < x < xg was partitioned 
by 29 verticals determined by a uniform partition of n/4 < 19~ < 37~14. The other 
intervals x1 < x < xc,1 for I = 1, 2, 5, 6 were similarly partitioned with 9 verticals 
apiece resulting from subdivisions of the angles 01 on either endcap. In addition, 

FIG. 14. Cascade airfoil for first test case. 
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a vertical slice was added at x1 . The inner radius RI was given a value of unity; 
the outer radius, the value of 1.2. Coordinate stretches were specified by setting smooth 
camber curve extensions of 0.75 in the upstream and downstream directions. The 
inner part of the camber curve was, for simplicity, given as vertically averaged data 
with a specification for a biparabolic fit. Next, the periodic spacing of airfoils was 
given a value of 0.75. The scaling of the coordinates should then be roughly 3 units 
across and 1 unit high. Consequently, absolute errors should be about twice as large 
as relative errors. The number of computational mesh points on the outer loop 
was set by choosing 36 periodic points above and below the airfoil and 15 points 
on both the upstream and downstream endcaps. The radial distribution was set for 
a boundary layer region to occupy one-quarter of the distance from the airfoil 
to the outer loop and to be resolved with one-half of the mesh points. For aesthetice 
reasons, 10 radial points were chosen so that there would be 8 inner coordinate 
loops. The generation of the coordinate system and three of its derivatives was 
executed with a computation time of slightly less than 30 seconds on a UNIVAC 
1110. Since most of the computation time went into the construction of the bounding 
surfaces, one need only store those surfaces and regenerate the coordinates when 
needed. If, in addition, the radial distribution function is stored, then the regeneration 
of the coordinate system and three of its derivatives is accomplished with only 
48 arithmetic operations per grid point. Regeneration of the coordinate transformation 
alone would take only 6 operations per point. A computer-generated graph of the 
results appears in Fig. 15. The airfoil contour was fit with a maximum absolute 
error of 4 x 1O-3 in the location of points. The curvature along the concentric arcs 
was generally accurate to within two or three digits while the larger curvature regions 

FIG. 15. Three cycles of the coordinate system generated in the first test case. 
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on the leading and trailing edges were accurate to within only one or two digits. The 
periodic alignment for periodically matched points was generally accurate to three 
decimal places and in some places had even greater accuracy. Certainly such excellent 
results cannot be visually discerned from the graph itself. However, it can be observed 
that the lines from the airfoil to the outer loop are for all practical purposes normal 
to the airfoil, and again, the result is in excellent agreement with the theory. Also 
the radial distribution, as expected, properly distributed the 8 inner loops. 

The second test case was constructed to display a coordinate system for a practical 
cascade of airfoils. For this purpose, measured data were taken from a typical jet 
engine turbine cascade. The cascade geometry for this case consists of the vertical 
slices displayed in Table I and the airfoil spacing of 16.5 units. The camber curve 
was generated within the airfoil by a biparabolic curve joined by linear segments of 
slope 0.0 in front and 2.4 in back. Smooth extensions outside of the airfoil contour 

TABLE I 

Vertical Slices of the Airfoil Contour 

xi 
2.500 
2.505 
2.510 
2.550 
2.600 
2.650 
2.700 
2.800 
2.900 
3.000 
3.100 
3.200 
3.300 
3.400 
3.500 
3.600 
3.700 
3.800 

EZ 
4.100 
4.200 
4.300 
4.400 
4.500 
4.700 
4.w 
5.200 
5.500 
5.900 
6.300 
6.700 
7.200 
7.8Oo 
a.400 

Yi 
2.000 
1.89 
1.770 
1.600 
1.460 
1.350 
1.250 
1.100 
0.920 
0.8% 
0.800 
0.740 
0.680 
0.620 
0.580 
0.550 
0.520 
0.500 
0.4gC 
0.470 
0.460 
0.420 
0.410 
0.h 
0.39c 
0.37C 
0.32~ 
0.3oc 
0.29 
0.271 
0.231 
0.221 
0.20( 
0.201 
0.23( 

/ 

/ 

, 

, 

, 

/ 

, 

, 

, 

, 

J 

1 

3 

3 

1 
3 

3 

3 

zi 
2.000 
2.110 
2.230 
2.400 
2.540 
2.650 
2.750 
2.900 
3.020 
3.llo 
3.200 
3.260 
3.320 
3.380 
3.400 
3.430 
3.470 
3.500 
3.520 
3.540 
3.580 
3.600 
3.620 
3.640 
3.680 
3.720 
3.780 
3.850 
3.930 
4.050 
4.180 
4.300 
4.450 
4.670 
4.90 

xi Yi 
9.100 0.320 
9.800 0.460 
10.60 0.700 
11.40 0.960 
12.30 I.350 
13.20 1.800 
14.20 2.500 
15.10 3.320 
16.00 4.300 
16.80 5.400 
17.60 6.530 
18.30 7.730 
19.00 9.100 
lg.60 10.50 
20.20 11.95 
20.70 13.25 
21.20 14.60 
21.60 15.70 
22.00 16.70 
22.30 17.55 
22.60 18.4'0 
22.80 19.05 
22.90 lg.36 
23.00 19.70 
23.10 20.00 
23.20 20.28 
23.30 20.60 
23.4C 29.90 
23.50 21.20 
23.60 21.50 
23.70 21.80 
23.80 22.15 
23.83 22.33 
23.86 22.50 
23.90 22.75 

=i 
5.200 
5.500 
5.920 
6.400 
7.010 
7.710 
8.650 
9.600 
10.70 
11.80 
12.92 
14.00 
15.20 
16.30 
17.20 
18.30 
19.25 
20.02 
20.80 
21.35 
21.95 
22.33 
22.55 
22.75 
22.95 
23.08 
23.13 
23.18 
23.20 
23.18 
23.13 
23.08 
22.95 
22.85 
22.75 
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FIG. 16. Three cycles of the coordinate system for a turbine cascade. 

were 5.0 units in front and 10.0 units in back. The loopwise computational mesh 

was set for 40 periodic points on top and bottom, 15 points in front, and 15 points 

in back. The radial distribution and mesh were the same as in the first case. In about 

30 second of UNIVAC 1110 time, the coordinate system and all three of its deviations 

were generated. The geometric results appear in the computer plot of Fig. 16. As in 
the first test case, the previous level of accuracy was retained for the curve fits 

(absolute error of 9.6 x 10-3), the periodic alignment (to three or more decimal 

places), and the airfoil curvature (which varied smoothly and reflected deviations 

from flatness). 

An additional point can be made with regard to the tapered trailing edge which 

in this case is rounded. Since it is a smaller region with roughly the same amount 

of turning as in the leading edge, the concentration of normal lines is greater. If the 

size of the trailing edge were to be limited toward a cusped trailing edge, then the 

concentration of normal lines would be increased with the limit being a local polar- 

581/26/3-6 
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like set of lines emanating from the cusp. Since the algorithm for generating the 
normal lines is based on distance minimization from outer loop points, the limit 
case of a cusp can be stably computed. If the airfoil is to be a coordinate curve 
(independent of the selection of coordinate system), then a cusp will lead to a coor- 
dinate singularity. The only possible removal of this singularity is to round the cusp 
with a small curve so that the result is a good approximation to the geometry and is 
sufficiently smooth. 

In a wider sense, the cusp is a special case of a discontinuity in the tangent vector 
field along a coordinate curve. Specifically, the airfoil, as a coordinate curve, had a 
tangent discontinuity at the cusp. Since it is possible, however, to design an airfoil 
shape with a similar discontinuity elsewhere, consideration must be given to its 
treatment. As in the case of a cusp, it can be formally removed by a rounding process. 
Also, as in the case of a cusp, the inclusion of such a discontinuity will always lead 
to a coordinate singularity. This fact is not at all peculiar to the present method of 
coordinate system construction, but is common to all coordinate systems which 
contain the airfoil contour as a coordinate curve. In particular, the coordinate 
systems generated from elliptic partial differential equations [lo, 111 or from a 
shearing process [13-171 are also singular in the same location and for the same reason. 
For the present method of construction and for methods based upon elliptic partial 
differential equations, the singularity occurs only on the airfoil surface. However, 
for sheared coordinate systems, the singularity is propagated across the entire 
coordinate system. To illustrate this matter, we shall consider a simple example. 
Suppose that the top of the airfoil contour contains a section of the form (y’, - 1 y1 I), 
while the outer coordinate boundary is locally given by (v’, 1). A uniform sheared 
coordinate system is then given by (xl, x2) = (y’, ( y2 - 1) I y1 j + u”) for 0 < y2 < 1. 
Since the derivative of the absolute value / y1 / does not exist at y1 = 0, the singularity 
at (0, 0) is propagated all along the coordinate line y1 = 0. By contrast, if the present 
method of coordinate construction is applied to the same local bounding curves, 
then the singularity at (0, 0) is not propagated into the interior of the coordinate 
system. Instead, a local polar-like coordinate system is smoothly imbedded into the 
overall system with no interior singularities. 

One may now recall that coordinate singularities occur at points where the Jacobian 
transformation (Eq. (17)) does not have a well-defined inverse. This is equivalent 
to a Jacobian (Eq. (24)) which either vanishes or is undefined at the given points. 
For the cases with discontinuous tangent vectors, the Jacobian is undefined. But 
from Eq. (24), the Jacobian is directly proportional to g1i2, which prominently appears 
in the Navier-Stokes equations (Eq. (27)). In this respect, a coordinate singularity 
leads to a vanishing or undefined Jacobian, and hence, to a degenerate representation 
of the Navier-Stokes equations at the singularity. 
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